EXECUTION TIME COMPARISON OF
ALGORITHMS FOR THE ASSIGNMENT OF REAL
TIME TASKS FOR MULTIPROCESSORS

Héctor Silva-Lépez!, Sergio Suarez Guerra?

! Physics Department, CINVESTAV-IPN, Av. IPN. 2508, A.P. 14-740, 07360, DF, Mexico.
hslifis.cinvestav.mx

2 Center for Computing Rescarch, National Polytechnic Institute, Mcxico, A.P. 75-476, C.P.
07738, Zacatenco. DF, México.
ssuarez:icic.ipn.mx

Abstract. Optimal scheduling of real-time tasks on multiprocessor systems is
known to be computationally intractable for large task sets. Any practical schedul-
ing algorithm for assign real-time tasks to a multiprocessor system presents a trade-
off between its computational complexity and its performance. In this work, we give
in this paper a survey on the execution time and performance of these algorithms,
structuring this work in two steps. In the first step, we simulate their exccution to
obtain their performance and the execution time of four algorithms, using a low
number of tasks. After these results were extrapolated to obtain the execution time
that it would take for a bigger number of tasks than the simulated. In the second
step, we chose two algorithms for partitioned its and executing on a shared memory
system using Pthreads and on a distributed memory system employing Parallel Vir-
tual Machine and Message Passing Interface tools.

1 Introduction

There are two strategies for real-time tasks scheduling on a multiprocessor system. In a
Global scheme each occurrence of a real-time task may be executed on a different proces-
sor. In contrast, a partitioning scheme enforces that all occurrences of a particular task are
executed on the same processor. Among the two methods, the partitioned method has
received the most attention in the research literature. The main reason for this is that the
partitioned method can easily be used to garantee run-time performance (in terms of
schedulability). Dhall and Liu in [1], two heuristic assignment schemes are proposed,
referred to as the RMNF (Rate Monotonic Next-Fit) and the RMFF (Rate Monotonic
First-Fit). The schemes are based on the next-fit and first-fit bin-packing heuristic, respec-
tively. In both schemes, tasks are sorted in no decreasing order according of their periods
before the assignment is started. The FFDUF (First-Fit Decreasing-Utilization Factor)



Héctor Silva-Lépez and Sergio Suirez Guerra

method is a variation of the first-fit heuristic scheme. Here tasks are sorted in the order
their load factor [2]. In [3], a best-fit bin-packing heuristic is used as the basis for the
monotonic best-fit (RMBF) schemes. Similar to RMFF, the RMBF attempts to assigp
tasks to processors that have been marked as full. In [4], two heuristic assignments
proposed, the RMST (Rate Monotonic Small Tasks) algorithm. It is for systems in whicj
tasks assigned to each processor are scheduled rate-monotonically. It first sorts the per;.
odic tasks in nondecreasing order according to their parameters X,’s, which are calculateg
with the following equation:

X, =log, p, —|log, p, |
It then assigns the tasks in this order on processors in the first-fit manner. The other algo-
rithm is the RMGT (Rate Monotonic General Tasks), first partitions all periodic tasks
two subsets according to their utilization. Tasks whose utilization is equal to or smaller
than 1/3 are in one subsct. These tasks are first assigned to processors according to
RMST algorithm. Then, the large tasks whose utilization is larger than 1/3 are assigned
on the first-fit basis to processors each of which has at most one task assigned by
RMST algorithm.
The non-partitioned method has received considerably less attention, mainly because
the following limitations. First, no efficient schedulability tests currently exist for the non-
partitioned method. The only known necessary and sufficient schedulability test for non-
partitioned method has an exponential time-complexity [S]. The complexity can be
duced with sufficient schedulability tests to a polynomial [6, 7, 8, 9] or pseudo-
polynomial [8] time complexity. Second, no efficient optimal priority-assignment scheme
has been found for the non-partitioned method.
The purpose of this paper is to survey execution time of four algorithms for the assign-
ment of Real-Time tasks for multiprocessors.
The remainder of this paper is organized as follows. In Section 2 the system model
described. Later on in the Section 3, we present four representative algorithms which
simulated to obtain the execution time for each Algorithm. Once obtained this time,
results are extrapolated to obtain the execution time of a number of tasks are bigger than
the simulated. In the Section 4 the two algorithms are assigned to a shared-memory multi-
processor system and to local memory distributed system. The obtained results are ana-
lyzed in the section 5. Finally in the section 6, summarizes the results reported in

paper.
2 System model

We considerer a set of tasks T={T),..., T,} of n periodic preemptive real-time tasks run-
ning on different processors. The tasks are independent (they don't share resources)
have no precedence constrains. Each task T, arrives in the system at time a,. The life-time

14



Execution Time Comparison of Algorithms for the Assignment of Real Time ...

of each task T, consists of a fixed number of instances r,. After the execution of r, in-
stances, the task leaves the system. The time interval between the arrival of the first in-
stances of two consecutive tasks T, and T, is defined as L, = a, - a,. In this model, T, is
the period and C, is the worst case computation time of lask In their seminar work, Liu
and Layland [10] showed that the utilization of system is the amount of processor load in
percentage in the system and it is expressed as:

U=YC,IT, o

1=

A schedule of periodic tasks is feasible if each task T; is assigned at least C, before its
deadline at every instance. The problem of planning a set of tasks with small load factors
is taken from [5], expressed as:

a=max [, 3)

tel. »

It represents the maximal load factor of any single task. For all practical purposes, we
may assume that a task set contains only tasks if a < %.

We initially assume the following system model:

1) Tasks are independent, arrive periodically and can be preempted. Hence, at every
moment, a dispatcher determines which task to execute. Tasks do not require ex-
clusive access to any other resource than a processor.

2) The cost of pre-emption is zero because we consider cache misses that occur
when a task arrives to be included in the execution time.

3) Worst case execution time is known a priori.

4) Only partitioned scheme algorithms are considered.

3 Task assignment algorithms simulation

The algorithms to simulate are the RMNF, RMFF, RMST and the RMGT. The simulation
consists on executing from 100 to 1000 tasks with increments of 1. In each increment the
algorithm is evaluated from 1 to increment. The tasks are generated in the following way:
1) The number of tasks of 100 < n < 1000

2) The period is generated following uniform distribution function with 1 < T,< 500

3) The compute time is generated of 0 <C,<a T,

4) The performance of the system is measured using two values of load factor, a = 0.2
and @ =0.5

5) Every increment runs 10 times and an average is obtained

The executed time of each algorithm is obtained with a Pc Intel Pentium IIl 650 MHz
with 128 Mb of RAM and running on the Operating System Linux. The function used for
the measurements is psched_get_time ().



Heéctor Silva-Lépez and Sergio Suirez Guerra

Since an optimal task assignment cannot be calculated for large task sets, we use the total
load (U = Z;ul) used in [11], to obtain a Lower Bound for the number of processors

required, where u, is the utilization of a task T,.

The results can be seen in the figure 1 and figure 2 with load factor of @ =0.2 and a =0.5,
the worst algorithm is the RMNF, followed by the RMFF, because they need a bigger
number of processors to execute the same quantity of tasks than the others. The two algo-
rithms proposed by Burchard are better, specifically for the RMGT needs a smaller num-
ber of processors than the RMST, for example for a =0.2 and 1000 tasks, the RMST
needs 137 processors, while for the RMGT only needs 133 processors, for a =0.5 and
1000 tasks, the RMST occupies 339 processors and the RMGT only occupies 300 proces-

SOrs.
3.1 Execution time extrapolation for =0.2 and a =0.5

In the table land table 2 represents execution time of each algorithm with a =0.2 and
=0.5. The time in clock ticks.

3 - - e -
¢ )’// S —
3 H o
3 7 i "
5 i R
e
Fig. 1 Sequential simulation for a =0.2. Fig. 2 Sequential simulation for a =0.5.
Table 1. Sequential Time. a=0.2
Alg \ Tasks 100 200 300 400 500 600 700 800 900 1000
Gen_tasks 2 3 4 6 7 8 10 10 12 14
RMNF 0 0 0 1 2 4 4 5 6 8
RMFF 1 9 33 74 151 261 410 632 934 1237
RMST 1 9 32 76 150 262 419 637 1207 1219
RMGT 1 9 31 76 151 202 419 634 895 1217
Total_Load 0 0 0 0 0 0 1 | 1 2




Execution Time Comparison of Algorithms for the Assignment of Real Time ...

Table 2. Sequential Time, a=0.5

Alg\Tasks 100 200 300 400 500 600 700 800 900 1000

Gen_tasks 2 3 4 S 7 8 9 11 12 14
RMNF 0 0 0 1 2 3 4 5 7 9
RMFF 2 15 43 108 228 378 611 895 1363 1835
RMST 2 14 42 110 219 369 595 875 1266 | 1794
RMGT ] 14 37 115 212 281 455 671 958 1324

Total_load 0 0 0 0 0 0 0 0 0 ]

3.2 Polynomial approximation evaluation, a =0.2 and a =0.5

Using the approaches polynomial for each algorithm, we have calculated the time would
take the program (in clock ticks) for a large number of tasks, see table 3 and table 4.

We can convert the clock ticks to seconds, with the following expression: clock ticks /
CLK_TCK. Where: CLK_TCK is equal to 18.2.

Table 3. Execution time for n tasks, a=0.2

Alg \ Tasks 1.000 5.000 10.000 50.000 100,000 500,000 1,000,000

Gen tashs 13.43667 65.31667 130.16667 648 90667 1297 46667 | 6485 46667 12970 1667
RMNF 7.81394 162 94858 629.59433 15271.8583 [ 608474333 1516361 83 6063029 33
RMFF 1244.6365 153486.713 | 1220438.08 151680883 1212564873 | 1 S14RE-11 1.2117E+12
RMST 1309.15333 | $1092.8333 | 214572433 | 5572409.23 | 22394705.2 561973073 2248946033
RMGT 1219.378 140923.05 1108327 135932407 1089586921 1359811 1.0876E+12

Tot_L.oad 1.85121 84.08033 35732133 | 936143333 | 376062.0333 | 945885233 378571023
Total 3796.26965 | 345814.942 | 2544454.57 | 2932106981 2324646006 | 2 RBO2E- 11 2.3016E-12

4 Parallel programming

We choose the RMST and RMGT algorithms for obtained the better performance than the
others four algorithms. In the following sections the two algorithms were implemented for
a multiprocessor system and for a distributed system.

Table 4. Exccution time for n tasks, a=0.5

Alg \ Tasks 1.000 5.000 10.000 50.000 100,000 500.000 1.000.000
Gen_tasks 13.47 606.55 1329 663.7 13272 6635.2 13270.2
RMNF 826943 256.13583 1043.24333 | 26431.0833 105893.333 | 2650689.33 10604429 3

RMFF 1845.26233 [ 256048.158 | 2081968.63 | 263781271 | 2113875044 | 2 646E~11 21172E¢12
RMST 1836.90367 [ 267825.117 | 2209237.57 | 285183961 [ 2274161939 | 2 8S02E- 11 2.2809E+12

RMGT 132113 197046.45 1638365.6 211667789 [ 1700557618 [ 2.133E+11 1.7071E-12
Total_load 2.005 391395713 | 7349812549 | 7.6553E+14 | 1.0147E+17 | 8 1499E+21 1.04068E 24
Total 5027.04043 | 39860813.7 | 7355743297 | 7.6553E+14 | 1L.OW4IE+17 | 8 1499E+2) 1.0468E -24




Héctor Silva-Lépez and Sergio Suirez Guerra

4.1 Parallel programming for shared memory

The execution of parallel programs for shared memory was realized in a Multiprocessing
Computer integrated by 4 Processors (Pentium III to 750 MHz) in cascade and an Operat-
ing System Linux NET4.0 for Linux 2.4

For the implementation with Pthreads, the time were obtained in second for load factors
of a=0.2 and a=0.5, the results are compared between the RMST and RMGT algorithms.
In the figure 3, we can observe that the execution time for the RMST and RMGT algo-
rithms are the same for a maximum number of threads of 10, while in the figure 4, the
RMST algorithm has an execution time less than the RMGT algorithm. In the two figures
is obtained that when grow the number of threads, the execution time is the same when
the number of threads starting of four threads, due principally because’ the maximum
number of processors in the computer used is four.

4.2 Parallel programming for distributed memory

In this part of paper two tools were used for the distributed memory. The first tool is Par-
allel Virtual Machine (PVM) and the second tool is Message Passing Interface (MPI).

For the implementation of these two tools we uses a Cluster of 9 computers (1 server and
8 clients) Pentium II to 450 MHz and 256 Mb of RAM, with an Operating System
LINUX Net Hat. For the communication of each node it uses a Switch Fast Ethernet
(Switch Intel Express 510T 10/100 Fast Ethernet) and cabled type FTP.

' ’ AaveY ks T

~.| - RVaT '.}’ - ST
.
% B
{: 1
3 >
s . s X N
; o
Fig. 3 Threads for a=0.2. Fig. 4 Threads for a=0.5.



Execution Time Comparison of Algorithms for the Assignment of Real Time ...
4.2.1 Performance Model

The objective of Performance Model is developing mathematical expressions that specify
the execution time. The execution time of a parallel program is the lapse time since the
first processor begins its execution until the last processor finishes its execution.

Because of space restrictions, we do not include here the details of the Performance
Model of our application.

4.2.2 Parallel Virtual Machine.

Based on the communications time, to the model and the experimental results the follow-
ing data were obtained, the data can be observed in the table 7, the time in seconds.

In the figure 5 correspond to experimental results and to performance model. We can
appreciate that the algorithm RMST has a similar behaviour to performance model, while
for the RMGT algorithm has a execution time bigger that the RMST algorithm. Based on
the communications time, to the model and the experimental results, the following corre-
sponding data were obtained for a=0.5, they are shown in the table 8, the time in seconds.

Table 7. Theoretical and experimental results with PVM, a=0.2

Slaves Tcomunications Tmodel Texp-RMST Texp-RMGT
1 0.253 78.41 97.50 125.27
2 0.429 39.51 52.09 66.82
3 0.606 26.66 34.17 42.40
4 0.782 20.32 27.48 3541
5 0.958 16.59 2064 2587
6 1.134 14.14 19.24 24.24
7 1.311 11.86 14.99 20.54
8 1.486 9.24 13.95 18.78

Table 8. Theoretical and experimental results with PVM, a=0.5

Slaves Tcomunications Tmodel Texp-RMST Texp-RMGT
1 0.253 78.41 99.07 123.62
2 0.429 39.51 59.48 73.60
3 0.606 26.66 34.24 58.30
4 0.782 20.32 27.30 48.43
S 0.958 16.59 20.42 3598
6 1.134 14.14 18.26 30.85
7 1.311 11.86 15.23 27.89
8 1.486 9.24 13.76 26.60




Héctor Silva-Lépez and Scrgio Suirez Guerra

In the figure 6 correspond when the load factor is equal to 0.5, the RMST algorithm has

behaviour seemed to presented in the figure 5, compared against the model. But the
RMGT algorithm has a different behaviour to present in the figure 5. This is due mainly
to great load factor (0.5), and for the number of tasks to be assigned to the processors by
the RMFF algorithm is bigger than the load factor (0.2). Besides the RMFF algorithm

presents a bad performance.

%y Reesr e
i Roant

RO

U

e Y ————
. . < . .
10cetme 1d Showrs

-

Fig. 5 PYM, a=0.2. Fig. 6 PVM. a=0.5.

4.2.3 Message Passing Interface
Based in the communication time, to the model and the experimental results for the

load factor equal to 0.2, we can observed in the table 9 the results obtained when the
RMST and RMGT algorithms were executed in MPI, the time in seconds.

Table 9. Theoretical and experimental results with MPI, a=0.2.

Slaves Tcomunications Tmodel Texp-RMST Texp-RMGT
1 0253 7841 122.35 125.42

2 0.429 39.51 62.84 78.78

3 0.606 26.66 41.95 50.07

4 0.782 20.32 31.08 3237

b 0.958 16.59 25.60 26.28

6 1.134 14.14 21.11 21.36

7 1311 11.86 18.14 18.34

8 1.486 9.24 16.1] 16.33

In the figure 7 a similar behaviour but no equal is observed in the figure 5, but in MPI
for the RMST algorithm has behaviour almost similar to the RMGT algorithm when the

20



Execution Time Comparison of Algorithms for the Assignment of Real Time ...

number of slaves are between 4 and 8 and when the number of slaves is equal to 1. Based

in the communications time, to the model and the experimental results for a=0.5 (see table
10), the time in seconds.

Table 10. Theoretical and experimental results with MPI, a=0.5.

Slaves Tcomunications Tmodel Texp-RMST Texp-RMGT
1 0.253 78.41 173.95 124 21

2 0.429 3951 85.06 65 86

3 0.606 26.66 55.34 5026

4 0.782 20.32 42.82 40.64

S 0.958 16.59 33.21 3222

6 1.134 14.14 2815 22.86

7 1311 11.86 2428 21.85

8 1.486 9.24 21.29 20.25

In the figure 8 the behaviour of the algorithms is different compared with the figures 5,
6 and 7, the RMST algorithm consumes more execution time than the RMGT and model.
It has behaviour almost similar to the RMGT algorithm when the number of slaves is
from 4 to 5 and from 7 to 8 slaves.

b wast H
RULT -
PR N

Senn
PO T AT ]

hatadeian ‘ k-l‘l-uc\ﬂun
Fig. 7MPI, a=0.2. Fig. 8 MP1, a=0.5.

5 Results Comparison

In this section the execution times are presented for executing the RMGT algorithm in
the sequential time as in the parallel time. The RMGT algorithm was chosen because it
has a better performance that the RMST algorithm and as the execution times are very
similar, it doesn't have any interest in presenting the two algorithms.

21



Héctor Silva-Lépez and Sergio Suirez Guerra

In sequential form the RMGT algorithm present an execution time less than RMST
gorithm for a load factor of 0.2 and 0.5, the times obtained in experimental and theoretica)
form for 1,000 tasks can be observed in the table 11 (the time in seconds). In this table
execution times in theoretical and experimental form are very similar for that we con.
cludes that the theoretical results presented in the table 2 are very near to the real execy.

tion for a quantity of a lot tasks.

Table 11. Scquential Time for RMGT

Load Factor Experimental Theoretical
02 66.87 70.00
0.5 72.75 72.59

The parallel times for threads, PVM and MPI can be observed in the table 12, for
load factor of 0.2 and 0.5, the time in seconds.

Table 12. Parallel Time for RMGT

Load Factor Threads PVM MPI
0.2 17.18 22.35 20.57
0.5 20.56 30.33 24.29

In the table 12, the time presented for the threads is obtained of an average between

time obtained of 4 and 10 threads, for the two load factors. For PVM and MPI the average
time was obtained between 5 and 8 slaves.

The time presented is the desired, for PVM and MPI have a execution time bigger than
the execution time of the threads, this is due to the communication time is implicit in

execution of a distributed system.

6 Conclusions

We have analyzed the performance of four algorithms for the real time tasks schedul-
ing in multiprocessor systems where their executed time were obtained. These algorithms
are the RMNF, RMFF, RMST and the RMGT. In the first part of this work, the executed
time obtained when simulating them were extrapolated to obtain approximate polynomial
that give us an idea of the time that would take each algorithm in executing for a large
number of tasks, being the time practically impossible of carrying out. For example, for
load factor equal to 0.2, it would be impossible its execution after of 50,000 tasks since
would take the program in execute in 6.215 months and for a load factor of 0.5, itis

possible after of 10,000 tasks since would take 12.82 years.

22



Execution Time Comparison of Algorithms for the Assignment of Real Time ...

In the second part of this work, two algorithms were chosen whose performance was
much better than the other ones. The RMST and RMGT algorithms were partitioned for
shared memory using threads and for distributed memory using PVM and MPI tools.

The final comparison of results shows us that when obtaining the approximate poly-
nomials they give very near results to the obtained in experimental form, for what, the
results were prescnted for a large number of tasks that not this very far from the reality.
On the other hand, to the partitioned two algorithms the results were obtained that we
were expected, that is, for the threads from 4 to 8 threads, the execution time vary very
little besides were compared with the obtained in PVM and MPI. Using threads presents a
better exccution time than in PVM and MPI, because to execution time we need to add
the communication time, implicit in a distributed system.

References

[1] J. Y. T. Leung and J. Whitehead. “On the complexity of fixed-priority scheduling of peri-
odic, real time tasks™. Performance Evaluation, 2(4):237-250, December 1982.

[2] S.K. Dhall and C. L. Liu. “On a real time scheduling problem™. Operations Research,
26(1):127-140, January/February 1978.

[3] S. Davari and S. K. Dhall, “An on line algorithm for real time allocation”, 19" Ann. Ha-
waii Int’l Conf. System Sciences, pp 133-141, 1986.

[4] Y. Oh and S. H. Son. “Tight performance bounds of heuristics for a real time scheduling
problem”, Technical Report CS-93-24, Univ. of Virginia, Dept. of Computer Science,
May 1993.

[5] Burchard, J. Liebeherr, Y. Oh, and S,H, Son. “New strategies for assigning real time tasks
to multiprocessor systems”. IEEE Transactions on Computers, 44(12):1429-1442, De-
cember 1995.

[6] J.Y.T. Leung. “A new algorithm for scheduling periodic, real time tasks”. Algorithmica,
4(2):209-219, 1989.

[7) B. Andersson. “Adaption of time-sensitive tasks on shared memory multiprocessor: A
framework suggestion. Master’s thesis”, Department of Computer Engincering, Chalmers
University of Technology, January 1999.

[8] S. Lauzac, R. Melhem, and D. Mossé. “Comparison of global and partitioning schemes
for scheduling rate monotonic tasks on a multiprocessor™. In 10" Euromicro Workshop on
Real Time Systems, pages 188-195, Berlin, Germany, June 17-19, 1998.

[9] L. Lundberg. “Multiprocessor scheduling of age constraint processes”. In 5™ International
Confercnce on Real Time Computing Systems and Applications, Hiroshima, Japan, Octo-
ber 27-29, 1998.

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
Real Time environment”, J. ACM, Vol. 20, no. 1, pp. 46-61, Jan. 1973.

[11] A. Burchard, J. Liebeherr, Y. Oh, and S.H, Son. “A linear time Online Task Assignment
scheme for multiprocessor systems”, Proc. 11" IEEE Workshop Real-Time Operating
Systems and Software, pp. 28-31, May 1994.

23



